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ABSTRACT

A model of queueing for a single server by several types of customers (messages, or
jobs), with a simple dynamic priority rule, is considered. The rule is equivalent to
selecting the next server occupant type with a probability proportional to the number of
that type enqueued. The situation studied here occurs in fields such as computer and
communication system performance analysis, in operational analysis of logistics systems,
and in the repair of elements of a manufacturing system. It is assumed that the population
sizes of the items of different types are large, and that the mean service rates are
correspondingly large, in comparison with the service demand rates. Moreover, it is
assumed that the system is in heavy traffic. Under these assumptions. asymp:otic
approximations are derived for the steady-state means and covariances of the number of
items of different types either waiting or being served. Numerical comparisons with

simulated results show excellent agreement,.
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Heavy-Traffic Analysis of Multi-Type Queueing Under Probabilistically Load-
Preferential Service Order

D. P. Gaver

Naval Postgraduate School
Monterey, California 93943

J. A. Morrison

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper is concerned with the analysis of queueing for a single server by several
types of customers (messages, or jobs) under heavy traffic. A simple dynamic priority
rule is presumed to schedule next service among waiting customers when the server
becomes available. The rule is equivalent to selecting the next server occupant type with a
probability proportional to the number of that type enqueued. For generalizations, with
special attention to logistics and repair problems, see Gaver, Jacobs and Pilnick [1].
Problems similar to that considered here have been studied by Towsley [2], Yao and

Buzacott [3] and by others.

The situation studied here occurs in fields such as computer and communication system
performance analysis, and also in operational analysis of logistics systems. It is also
possible to find it in manufacturing, where each of several types of machines suffers
occasional breakdown and is eligible for repair. The total productivity of the system
depends on having a sufficient number of each machine type in operation; the present
scheduling discipline assists in this objective, although others (to be discussed in a
subsequent paper) are more effective. Note that the current discipline closely resembles a

processor-sharing scheduling rule which is freqr~ntly used for controlling multiprocessors




in computer systcms.

In a specific model formulation, there are r types of demand-producing items, and X is
the population size of items of type i. If Ni(r) denotes the number of items of type i
waiting for service, or being served, at time 7, then the probability that a new type i
demand for service is initiated in (r, r+dr) is N,[K;—N;(r)]dr + o(dr), so that \; is the
service demand rate for items of type i. The service time of items of type i is
exponentially distributed with rate v;, so that the mean service time is 1/v;; service times
are all independent. Thus all queue lengths are finite (N;(r)=<K;) and a long-run or

steady-state distribution will always exist, as is true of the simple repairman problem [4].

A particular example of the probabilistically load-preferential scheduling rules, e.g.
considered by Gaver, Jacobs and Pilnick [1], is the following. Let N(1+) = (N,(7+),
Na(r+),....N,(7+)) denote the state of the system at time 7+ immediately after the
service of an item is completed. Then, for N(7+) # 0, an item of type i is selected for

service with probability

. ciNi(t+)
gi(N(1+)) = ————— | (1.1)

Z oNi(t+)

j=1
where ¢;>0 for j€(1,2,...,r). Such a service schedule gives preference, with
appropriate weights, to those types of items of which there are more waiting for service.
If one of the queues gets long compared to the others, then it is likely that an item from
that queue will be selected for service next. Hence this scheduling rule may be regarded

as a variant of serving the longest queue first.




For N{r) #0, let /(r) denote the itype of item which is being served at time r. It is
clear from the assumptions made that (N(r), /(r), r=0) is a finite-state-space Markov
process in continuous time with integer-valued vector state space. In principle, the joint

probability distributions v
PIN(t)=n, I(t) =i [N(O) =n{0)} = Pi(n,t;n(0)), i€(1,2,....,r), (1.2

where 0=n;=K;, j€(1,2,...,7), can be found, given the initial condition n(0), by

r
soiving a system of r [l (X;+1) linear differential equations, the Kolmogorov forward
g 5 o B g
J:

equations (4]. All probabilistic quantities of interest can be found from such equations, or
similar backward equations. In practice such solutions involve extensive computing, so it

is of interest to proceed otherwise.

To simplify the analysis, we make two basic assumptions. The first is that the system
is large, i.e. that the population sizes K; = a a;, where a >>1 and a; = O(1). Since a fast
server is needed to accommodate a large system, it is also assumed that v; =ap;, where

p; = O(1). The second assumption is that the system is in heavy traffic circumstances.
r

meaning that 2 \;a;/p; > 1. This condition ensures that the server is extremely unlikely
i=1

to be idle. Under these circumstances, Gaver, Jacobs and Pilnick [1] derived a diffusion

approximation, and obtained numerical results for the time-dependent problem.

In this paper we consider the steady-state problem under the same circumstances, and
derive asymptotic approximations for a >> 1 to the means and covariances of the number
of items of different types in the system, i.e. either waiting or being served. The lowest
order approximation to the means agrees with that obtained from the diffusion
approximation [1]. In this paper we also derive the first order correction term to the

means. Our approximation to the covariances differs from that obtained by the diffusion




approximation, when the service rates v; are unequal. However, numerical results indicate

that the difference is not very large.

In §2 we focrmulate the problem, and introduce generating functions. We then
introduce the scalings corresponding to a large system in heavy traffic, and look for an
asymptotic expansion in inverse powers of a. The leading term in the expansion is
obtained in §2, and the first order correction term is derived in §3. Asymptotic
approximations to the means and covariances of the number of items of different types in
the system are obtained in §4. Numerical comparisons, which show that the asymptotic
and simulated results are in excellent agreement, are presented in §5. In the appendix we
give an alternate derivation of the lowest-order asymptotic approximation to the means
and covariances, and indicate how we obtain the first order correction to the means by this
method. We also derive the lowest-order asymptotic approximation to the joint probability

density function.

2. AN ASYMPTOTIC ANALYSIS

Without special boundary conditions the setup described in the previous section is an

irreducible finite Markov chain and hence possesses a steady-state or long-run solution

lim P;(n, t; n(0)) = p;(n), 1€(1,2,...,n), 2.1

t-X

where n=(n;,n,,...,n,). We note that p,(n)=0 if n;=0, and p;(n) =0 unless
0=n=K, n#0, where K=(K,,K,,...,K,). The steady-state probability that the system
is empty is denoted by p(0). For 0=n=K, n#0 and n# K, g;(n) is the probability
that, when an item departs and leaves the system in state n, then an item of type i goes

into service. We assume, for the time being, only that ¢;(n) =0 if n;=0, g;(m) =1 if

ni=0for j#iand l=n;=K;, and Z ¢g(n)=1for0=n=<K,n#0and n#K.
i=1




We denote by e; the vector with components e;; = 8;;. Then, in a standard manner. we

obtain

NKip(0) = X vipjepy, (2.2)
ji=1 Jj=1
[/2 M(K;=8;) + viipi(e) = NiKip(0) + X vipilei+e)), (2.3)
<~ Pt

and, for n;#0,n#e¢; and 0 =n=K,

[/i N(Kj—nj) + V:‘] pi(n)
1

= E )\J(K’,—nj+1)p,(n—ej) + qi(n) 21 vjpj(n+ej) (24)
j=1 j=

We introduce the generating functions

w(x) = 3 pmxy' - X, (2.5)
Osn-¥
and note that 4;(0) =0. We now multiply equations (2.2), (2.3) and (2.4) by 1, x; and

x'l" Cee X, respectively, and sum on i and n. It is found that

Jj=1

r r 9 r
> u,-(x)] -x; > —} =3 ﬁ (1=x)) uj(x). (2.6)

U
i=1 =1 9% j=1 X

r
This equation, which holds for general g;(n) with _21 gi(n) =1, will be useful later. The
i=

equation is vacuous if x=1, so that one of the original equations is redundant. The

normalization condition is

p0) + S u(l) = 1. (2.7)

i=]

We now consider the particular case




Cin;

gi(n) = — . (2.8)
z om
=]

where ¢;>0 for 1€(1,2,....,r). and multiply equations (2.3) and (2.4) by c¢;x; and

r

12 cmx(' - - - x,", respectively, and sum on n. After some manipulations it is found that
-]

2 e S [2 NK(1- xj)u]
(=] X

j=1
d L Vil
= p(0)eihiKix; + ¢ix; —— ,—'-
p(OYc;NiKix, + ¢x ix (j?l 5 } l; cix) (viu;)
+ 2 cx) — 6 E Axi(1-x;) -——] (2.9
=) X}

j=1

We are interested in the means and covariances of the number of items of different types

in the system, namely £(n;) and E(njny) — E(n}E(n;). We note, from (2.5), that

E(n) = 2 ., Emry=3 [

(1) + 8, 2 m] (2.10)
< axj < Lox a X Ok dx; : '

We now introduce the scalings corresponding to a large system in heavy traffic, and let
K)'=a0.)“ V}'—CI'J-}', jG(l.Z,...,r); a>>1. (211)
where

rooONO
> ;’ > 1. (2.12)
j=1 B

Since, from (2.10), we are interested in the behavior of ui(x) in the neighborhood of

x =1, we also let

v, = 1= E/a, ui(x) =108, Jje(l.2,...,r). (2.13)

Then. from (2.6), (2.7) and (2.9), we have




p(0) + S u(0) =1,

im]

19

r r g] r alb‘ _ r .
,-';1 A {O‘J‘[P(O) + 3 lb.‘(&)] + (1 - ';‘) E} =3 mw,(g).

iwm] im]

J=1

and
4 £\ 9, r (1-&/a) oy, cimil;
i lgl C1(l a] 3E) C,-j”l M (l—§j/a) 3t a(1-E. a)
B ra (1-2) - L S et 3 af _E)i’_‘”_f
IEAY A ’ a = J j-/[=] ! a aE_/
1 & £ 1 < §j 28, oY,
L% o (i- oL S an(i-2)p- 2y 2
1 & £} & & v
+ aj%xjg,(l a]glc,[l a] T

We assume an asymptotic expansion of the form

i) ~ wiO(E) + %M”(@ + o, p(O)~0,

(2.14)

(2.19

(2.16)

(2.17)

since we expect p(0), the probability that the system is empty, to be exponentially small in

a. Then, to lowest order. from (2.16) we obtain

AT ’ T
T% c — - ¢ K = 0.
E Ty T Z M T
These equations are satisfied by
60
w}O) = __I_.L_‘
m, o

where the function 8(§) is to be determined. But, from (2.15) and {2.17), we have

awi® r
= E IJ-'&‘\D(‘O) )
aE_] ey 7217

IRV I (a},mbﬁ-m -

=1 i=)

(2.18)

(2.19




We look for a sclution of the form

8(6) = 6(0) exp(~ I Bit) . (2.21)
[=1
so that, from (2.19),
ciB, oo cif;
v = - GRS ML B,B(E). (2.22)
i o¢; 1y
We let
rcify .
A= -_— (2.2
,'§1 M
Then (2.20) 1s satisfied if
A}\j((lj— B_}) = Cijv 1.e., Bj = ‘—i&‘(}j—' (2.24'
(ANj+c)

Since we want 3;>0, j€(1.2,...,7), we want A > 0. But, (2.23) and (2.24) imply that

r c»)\,aj
F(A) = —
jgl wj(AN;*+cj)

-1=0. (2.29

But F(0)>0, because of assumption (2.12), and F(+=)=—1. Since F(A) is a
decreasing function of A for A >0, it follows that there is a unique solution A >0 of

F{A; =0. From the normalization condition (2.14), and (2.17), we have

ﬁ {90 = 1. (2.26)

=]

It follows from (2.22) and (2.23) that

1
8(0; = — e

This completes the determination of 6(£), and hence w!%(¢).




In the next section we determine w$P(£). The reader who is not interested in the
details may proceed to §4, where the asymptotic approximations to the means and

covariances are evaluated.

3. THE CORRECTION TERM

We now consider the first order correction term ¢! (&) in the asymptotic expansion

(2.17). It follows from (2.16) that

r alb('l) r
My 2 C 85’1 = Cj E K
/=1

.} (0) albto)

r
= M z Clgl aEK + ¢ E p’j(E gl FY3 - T Clp'll‘b(o
=1 s/ j=1 ,l

du§y

r r a\bSO) r 0
- 2 Nag ¥ ¢ = 3 cihjob

j=1 l=) o€ i=1
, a‘bSO) r r aZw(O)
-S> — -3 NS o . (3D
S eg &Y T a8
It is found, from (2.21), (2.22) and (2.24), after some reduction, that
AT v
B 2 € -c ;i
‘ 2 1 E.I rjgl ! agl
_ ‘B‘ 5 r r r .
= an 9(§) 2 ciBy—Aciki AR X oBiQ2-8) — 2 aBi X ¢BE]- (3D
j=1 j=1 I=1 i=1

We note that if we sum (3.2) on /, and use (2.23), then soth sides of the equation are

identically ze. ».

In view of (2.21), we let

U® = x® exp(- T Bek). (3.3
k=1
and we define
B = ECIB}” D= EC}BJ (3.4




.10 -
Then, since 8(0) = —1/A4,
) - e))
M lgl CI( 3t ] Ci ng P'j( 3t BIXJ )
C r
= - ‘B' [D Acip; ~ABuE + (24— B) Cij&j]- (3.9
j=1
We look for a solution of the form
C;
(g = — [a‘*’ -Bo(®] + a4 + 2 i (3.6)
i agl =1

and note that the terms involving (! are annihilated by the operator on the left side of

(3.5), i.e. they provide a solution of the homogeneous equation.

It is found that (3.5) is satisfied by (3.6) if

r ciBi
ciBi X miby — Bpiby = ;’—MI— ((B—2Ap)ckBi + ABp;85], (3.7
j=1 i
and
r r r CB
cBi X wjaj — Bwa =¢ X by — i Y aby + —— (Aeu;—D). (3.8)
j=1 j=1 =1 Aty

If we sum (3.7) and (3.8) on i, and use (2.23) and (3.4), then both sides of each equation
are identically zero. Since we are looking for a particular solution of the inhomogeneous

equation, we may take

=1 j=1

Then (3.7) and (3.8) imply that




-11-

ciBi B .
bix = ABw, [(2 Ap.i)ckBk Baik], (3.10)
and
2¢B;
o= 2B p_pey (3.11)
AB?p,

It remains to determine the single function &‘¥’(€) in (3.6). But, from (2.15), (2.17)

and (2.20), we have

r r n alb(l) )
2 NE S (OLJM + OE ) E w; €505
Jj=1 =1 ) =1
4 , & v . 2.4,(0)
j=1 i=1 =/ Jj=1
It follows, from (2.21)-(2.24), (2.27) and (3.3), that
1 r r 1 r r a (1) 1
2 2Bl Zx T I NG S - S w
j=1 i=1 j=1 i=) ] i=1
= % E —AN)B,EL. (3.13)

Then, from (3.6), we obtain

r (1) 1 r roog a¢(1 ’ aCb(l)
E: E, - E, Bi& S — +
Pt '1_1 W ag 3k A = ciBj P N j}s‘,l (ANj+c))€; —— 5,

_ 1 r 2 l r r r
% 2 G ANBE - 3 o 2 CEAY

j=1 iml
-0y S byt S (et S baty). (3.14)
j=1 =] Jj=1 k=1

We look for a solution of the form

oV(§) =k + E ek + T E 2 Wik (3.15)

k=1 =]

where we assume, without loss of generality, that




-12 -

Wy = Wy (316)
We define
C'B‘ r 1
8jk = ‘iA—j‘ 21 by — wiby + " (ANj=c)B b, (3.17)
=
r C;
r=3 -:_ W, (3.18)
=] H
C'B' r r
hj = )\jrj + —":‘l— .21 a; + )\j .21 bij - Wa;, (319)
and
r YN
e= 3 (3.20)
i=1 “’i

Then, it follows from (3.14)-(3.20) that

(3.21)
r r c . r
j=1 k=1 A j=1 A
In view of the symmetry in (3.16), we deduce from (3.21) that
1
[(A}\1+C]) + (A)\k+ck)]wjk = ‘;(Cjﬁjrk"'CkBij) + &k + gkj' (322)
Hence,
(c;B;Tx + il
w = + fu, .23
kT ATAN o)+ Aherop] T Tk (323
where
(8jx + &)
fi = LML) fis - (3.24)

(AN +c) + (AMere0]

We define
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-3 B (3.2
Wi

i=1
Then, from (2.23), (3.4), (3.10), (3.17) and (3.24), we obtain

=L gep (L-L_C 85,
8k = PE CjB/CkBk(p.j e A) + NiB%u, (3.26)

and

C
20NB8 4 ~ Vel c;BjciBu)

= , 27
T [(AN;+c)) + (AN +cp)] (3.29)

From (3.18) and (3.23) we have

ci(c;BiTx + cxBeT )

1 r
T A : 3.28
et % ri[(AN+c)) + (ANt )] E} W ~ fi (3.28)

which is a linear system of equations for I'y, k€ (1,2,...,r), with known coefficients,
which has to be solved numerically, in general. Once the I'; have been calculated, W 1S

given by (3.23). Also, h; is given by (3.19). We define

ro¢
G=3 - (3.29)
i=m] g
Then, from (2.23), (3.4), (3.10) and (3.11), we obtain
_ 2 c 1
hy = NI + Cij[)\j(-B— - -A—Z- -A—p_.]—] + —E-B—(ch—G)] . (3.30)
Next, from (3.21), we deduce that
(ANj+cj)y; = % cjBj t+ hy. (3.31)
Hence, from (3.20), we find that
23 , chi
[1 Sl SR oo SN (3.32)
j=1 wi(AN;+cp) F=1 Mi(AN;+c))
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But, from (2.23),
2
___Li__ciﬂ__ é_if_ﬂf)‘_f_> (3.33)
A = ki(ANj+c)) j=1 kj(ANj+c))

Hence € is determined, and then v; is given by (3.31).

It remains to determine the constant k in (3.15). But from the normalization condition

(2.14), and (2.17) and (3.3),

r

= 3 U = 3 xM(0). (3.34)

i=1 i=]

It follows from (3.6) and (3.15) that

é ['&‘ (vi—Bix) +ai] = 0. (3.35)

i=] ¢
Hence, from (2.23), (3.11), (3.20) and (3.29), we obtain

+ — —2_ (AD —BG). (3.36)

= £
KT 4 T 422

This completes the determination of &‘V(£), and hence x{V(&) and ¢{V(¥).

4. THE MEANS AND COVARIANCES

We now evaluate the asymptotic approximations to the means and covariances of the

number of items of different types in the system. From (2.10) and (2.13) we have

52
E(n) = -a ——(0) E(njny) = a’ (0) + 84E(n;). (4.1
! :gl ag/ T :% ag,agk HEE
Hence, from (2.17), we obtain the asymptotic approximations
G
—(0) + - - .], (4.2)
im] ag/

and
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2y FERAY

o . (0) + a
(njng) = BuE(n;) ~ 21[ TR T T

) + - ] (4.3)

From (2.22), (2.23) and (2.27) it follows that

o op{”
_21 oE; O =8 oo

Also, from (3.3), (3.6) and (3.15), we have

Ci
ng—(o) o (w;—Biv)) + by — B;x{P(0). (4.5)

Hence, from (2.23), (3.10), (3.18), (3.25) and (3.34), we obtain

r, auf! 2_C __1
Z0) =T, - ay; + (= -5 - — 4.6
igl aE, © CJB"( A2 A'J"j] (4.6)

From (4.2), (4.4) and (4.6) we find the asymptotic approximations to the means,

1 c
E(ﬂj) ~ aﬁj + [A'Yj—rj'+Cij (A_p.j-’- A—z— %)] o 4.7

The quantities 3; are given by (2.24), where A is the positive root of (2.25), and B and C

are given by (3.4) and (3.25). Also Ty, j€(1,2,....,r), satisfy the linear system of

equations (3.28), subject to (3.27), and v, is determined from (3.29)-(3.32).

Next, from (2.19), (2.21), (2.23) and (2.27), it follows that

r Z\b(O)
2 ot O T Pibe “®

Hence, from (4.2)-(4.4) and (4.8), we obtain

E(njnk) = E(n;) E(ny)

2 (1) a‘l,(l) 6\11(])
{BJ Jk ""?] [ag,aek 0)+Bj—— 3t Bk—?g;'-(o) } cee (4.9)
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But, from (3.3) and (3.34),
r 62‘1,51) a‘b}l) 6\b§1) r 62 51)
0)+B, —(0)+ By —(0)] = 0. (4.10)
p [ae,-aek ©O*Pi T ‘o DI
Also, from (2.23), (3.6), (3.15) and (3.16), we have
r 62 (H
—(0) = ~ Awy. (4.11)
,2:1 agjagk *

From (4.9)-(4.11) we find the asymptotic approximations to the covariances,

E(njrlk) - E(nj)E(nk) -~ a(Bjsjk—Awﬂ() + e, (412)
where wy is given by (3.23) and (3.27). We note that the covariances, as well as the
means, are of order a.

We now consider those systems for which
A=\, ¢i=c je€(1,2,....n), (4.13)
since it is then possible to explicitly solve (2.25) for A and (3.28) for I';. We note that
assumption (2.12) is now

rooo;
AS L >, (4.14)
j=1 F‘-j

The solution of (2.25) is found to be

r ; 1
A=c[S 2L -= (4.15)
(j"l u’j }\)
Also, from (2.24),
LY 4.16
B = Tnro (4.16)

and, from (3.27),
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B; cC
L = L - 4.17
where, from (3.29),
c=c3 2 (4.18)
imy] Mg
We define
r T.
Q=3 —+. (4.19)
j=1 M
Then. from (3.28) and (4.15)-(4.17),
.2 A _C
AQAN+OT, = c2QB; + 2cAB; (M Az]. (4.20)
If we divide (4.20) by u; and sum, we find that
C
0= m (AN—0). (4.21)
Hence, from (4.20),
T, = B [2‘- S o (AH.:)]. (4.22)
(2AN+¢) Lpe AN
It follows from (3.23), (4.17) and (4.22) that
Bidj — Awi
cBidx c?B,Bx [ o) 2 3 1 1
= : + 242\ +24Nc+c? —x—-+—-], 4.23
(AN+c) (AN+c)(2AN+c) LA3A ( c*ed (uj uk] 29

which gives an explicit expression for the asymptotic approximations (4.12) to the

covariances.

It remains to calculate the first order correction term to the means in (4.7). The

quantities h;. € and vy; are obtained in a str~i shtforward mar .. r from (3.29)-(3.32) and
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(4.22). Itis then found from (4.7) that
E(n) ~ aB; + i (2--%) + (4.24)
)T AR T LANFo2AN+o) \n, A '

Since our approximation (4.12) to the covariances differs from that obtained by the
diffusion approximation [1], we give an alternate derivation of our results in the appendix.
Corresponding to the scalings in (2.11) we let n;=af3; + \/;vj in (2.4), with g;(n) given
by (2.8). We then develop an asymptotic expansion in inverse powers of Va for
&i(v)=a"?pin). Tt is found that, to lowest order, p;d;(v)~c;p;®®(v), where
A ®O(v) is a multivariate Gaussian probability density function. From this we are able to
obtain the lowest order approximations to the means and covariances, and we again obtain
(4.12) and E(nj) =af;+ O(1). Although we omit the rather lengthy details, we have in
fact carried out the analysis to the next order in the asymptotic expansion, and have
verified that it leads to the approximation (4.7) to E(n;). It is of interest that the
asymptotic expansions of the densities are in inverse powers of Va, whereas the

expansions cf the moments are in inverse powers of a.

The difference in the equation for the covariances between our approximation and the

diffusion approximation [1] is pointed out in the appendix.

5. NUMERICAL EXAMPLES

In order to check the accuracy of the approximations proposed, several systems were
both simulated and approximated. In all cases studied the agreement between the
asymptotic expansion approximation and simulation was excellent for both mean and
standard deviation of the steady-state distribution. The mean of the diffusion
approximation agrees with the lowest-order asymptotic approximation; the standard

deviation of the curr=nt diffusion approximation agrees preciselv with the lowest-order
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asymptotic approximation only when the service rates are identical. but correspondence is

quite close numerically for all situations investigated to date.
Here are the systems, and their properties.

System 1
(r=3)

i: 1 2 3 4 5
K;: 100 110 120 130 140
A 1.3 1.3 1.3 1.3 1.3

vii SO 100 300 400 450

Ci 1 1 1 1 1
Means
Asymptotic: 81.40 89.54 97.68 105.82 113.96
Simulation: 81.14 89.39 97.47 105.60 113.74

(95% Conf.)  (81.04, 81.24) (89.23, 89.54) (97.37,97.57) (105.42, 105.79) (113.53, 113.95)

Std. Deviations

Asymptotic: 3.73 4.38 4.93 5.23 5.50
Diffusion: 3.75 4.38 4.91 5.20 5.47
Simulation: 3.75 4.38 4.89 5.24 5.56

(95% Conf.) (3.67, 3.82) (4.31, 4.45) (4.80, 4.97) (5.17, 5.31) (5.48, 5.65)
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System 2
(r=23)

ir1 2 3 4 5
K: SO 100 150 200 250
A 13 1.3 1.3 1.3 1.3

v;: SO 100 300 400 450

Ci 1 1 l 1 1
Means
Asymptotic: 39.18 78.37 117.55 156.73 195.91
Simulation: 39.10 78.17 117.35 156.26 195.57

(95% Conf.): (39.03, 39.18) (78.0S, 78.28) (117.12, 117.57) (155.95, 156.57) (195.30, 195.84)

Std. Deviations

Asymptotic: 2.78 4.25 5.85 7.13 8.34
Diffusion: 2.85 4.33 5.90 7.24 8.56
Simulation: 2.78 4.21 5.90 7.19 8.33
(95% Conf.): (2.75, 2.80) (4.16, 4.27) (5.81, 6.00) (7.13,7.2% (8.26, 8.40)

The simulations were carried out on an IBM 3033 computer at the Naval Postgraduate
School, using the LLRANDOMII random number operating package; Lewis and Uribe
[S). Time-dependent queue lengths were simulated: an event clock was advanced at either
job arrivals or service completions, and queue lengths were suitably incremented or
decremented. The current queue lengths were recorded at fixed discrete time steps; 500
independent replications were recorded. A batch mean process was utilized to obtain the

confidence limits. For further details see Pilnick [6].

For the two systems displayed, and for many others explored, the leading term
asymptotic agreement with simulation was well within the 95% confidence limits displaved
for the latter. Diffusion approximation was also good, but slightly less accurate than the

asymptotics described here. A full description of the diffusion approximation approach
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taken is given in Gaver, Jacobs and Pilnick {1}. The small size of the standard deviations
as compared to their means is noticeable: certainly there is little resemblance of the current
system behavior to that of a system with multi-type Poisson arrivals for service. In the
latter situation the queue length standard deviation will be close to the corresponding
mean queue lengths in heavy traffic. Of course in the case of multi-type Poisson arrivals
there will be a steady-state solution only if 2 suitable traffic intensity for the system is less
than unity; no such condition need be satisfied for the finite systems considered in this
paper.
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APPENDIX

We here give an alternate derivation of the asymptotic approximations to the means

and covariances of the number of items of different types in the system. Corresponding to

the scalings in (2.11), we let
(Al

mo=aB,+ Vav, pm=émla,

and it will be shown that B; is given by (2.24). From (2.4) and (2.8), we have

b, (V) + 3 M[‘lj‘ﬁj“{/%) [d:(v) — di(v=e;/Va)]
j=1

r

1
= ;‘ 2 )\jcb,(v—eJ/\/Z) -+

C'( ,+V/\/Z) r
= - B - E ;.chbj(v+ej/\/2). (A2)

Jj=1

kZl C}AB){‘"V}J\/Z) J=1

If we expand in inverse powers of Va, we obtain

Kb (V) + ﬁ: Aj(aj—ﬁj-—\;—%-] [_1_@_1(‘,) + - ] - % 2’: Mld(vy+ -]

= Va v =
where B is given by (3.4).
If we sum (A2) with respect to i, we find that
S wibv+ 3 M("‘j"ﬁj__\rfi—‘] ) [¢:(V) —bi(v—e;/Va)]
i=1 j=1 a’ i=
(A4)

2’: ujcbj(v+ej/\/-5).

=1

=1 3, b,iv—e;/Va) +
j j
a =1 =1

It follows that
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i M(aj‘ﬁj_—v\/%) Er: [%(V) 2\1/— :d)' WM+ - ]

=1 i=]
S A e e [ I
= g Y 2‘,1 [di(v) + ]+,§1 Mi 5y, W+ = o (v) +

We assume an asymptotic expansion of the form
1 1
&i(v) ~ o7 + —= oW + — HPW + -

Then, from (A3), we obtain

LS P = B OO,

j=1

wd{0(v) =

where @@ (v) is to be determined. But, from (AS),

r r 39 r 86(@
> ANa;—B)) —8\.’} =2 u .

j=1 i=1

It follows from (2.23) and (A7) that

r aq)(O)
> [ANj(a;=B)) = ¢;B] T =0.
j=1

This equation is satisfied if (2.24) holds, which we assume to be the case.
Next, from (A3) and (A6), we have

IB ¢ B 4 4
wid{V(v) - -——' > b (v) = 3'- (Vi_ 5 Ckvk) S bW
i=1 k=1 j=1

i & 3d’§0) 4
b — . -
B E K 8\'j ng M (aj BJ

Hence, from (2.24) and (A7), we obtain

d,(O)

'].(AS)

(A6)

(A7)

(A8)

(A9)

. (A10)
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pid{P(v) = ¢ V(W) + ¢ [Vi - %’ i Ck"k] o (v)

k=1
1 1) < 59©
+ ofif=-— 8 : All
CIBI(B Ap.,) ng CJBJ an ( )

where 1 is to be determined. But, from (AS) and (A6),

roablD o e

S Mo=B) 3 —— = 3T —
jgl e N1 j=1 )7

r , a¢(0) , aZ(bSO)
=33 Gty SMeB) S

j=1 i=1 j=1 i=1 OVj

’ az(b(O)
+ 2 Y 2 &0(v) + 1 2 "y (A12)
J:[ j=] j‘l a ]

From (A7), (All) and (A12), with the help of (2.23), (2.24) and (3.25), it is found.

after considerable reduction, that

1 r C r anD(O) r aZC_)(O)
g 2 [_—7) 2 bk T—— — X ¢y

M) k=1 gvjove 5 v}
1 & S g d ) Oy =
-3 — 3 B — (w®") - 2 (AN; +cj)——(\’CI> ) =0, (Al3)
A D P fa ov; i=1

an equation involving ®©@ only. From (Al) the normalization condition implies

asymptotically, from the Euler-Maclaurin summation formula [7], that

f c f i b, (V)dv, -+ - dv, = f i d(v)dv ~ 1. (Al4)
- -x =] -x =]

Hence, from (A6),

x

f 2 o@wydv=1, f 2 o{V(v)dv = 0. (A15)

-x =] —-% =]

It follows from (2.23) and (A7) that
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(A16)

We let

M =A [ vi®Owv)dv. (A17)

-x

Then from (A13), after multiplication by v; and some integrations by parts, we obtain

AN+OM = e 2, A= oy, (A1R)

Hence,
L s A=0. 9
[ A § (AN, +c,)] = (A19)

It follows from (3.33) that A=0, and then from (A18) that M;=0. Consequently, from
(A1), (A6), (A7), (Al5) and (A17), E(n;) =af; + O(1). We have in fact carried out the
analysis to the next order in the expansion (A6), and have verified that it leads to the

asymptotic approximation (4.7) to E(n;). However, we omit the rather lengthy details.

Next we consider the covariances, and let
My=A [ vy ®Q(v)dv. (A20)

If we integrate by parts and use (A16), we obtain

2 (0)
A f 1AV dv = 8;; 8y + 8,8, (A21)
v} Vi
and
P 3
A J vivig= (0 O MNydv = — (5,My + 8,;M,) . (A22)
—x 'j

Hence, from (A13), we find that
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1 & ¢
[(A)\i+c.-)+(A)\1+Cl)]Mu"X > 'u_’;'(ciBiMlk"'CIBIMik)
k=1
1 2C 1 1
= 2¢;B;dy + Y ciBiclBl( A " p‘l]. (A23)
If we let
My=8:8; —Awy, (A24)

then we obtain equation (3.23) for wj, where Fj and fj are given by (3.18) and (3.27).
The asymptotic approximations (4.12) to the covariances follow from (Al), (A6), (A7),

(A20) and (A24).

We remark that in the diffusion approximation [1] to the covariances, the off-diagonal
terms on the right-hand side of equation (A23) are absent, although the diagonal terms

agree exactly.

We will now show that A ®@(v) is a zero-mean multivariate Gaussian probability

density function. We introduce the characteristic function

X(O)(Y) = A f ei"'y(b(o)(v)ciV, vy= i VIV, (A25)
-x =]

where i =V —1. If we integrate by parts, we obtain

= 2 50
Afe"'ya(b d

= — ()
J 3v, v, \ Yi¥ex (Y, (A26)
and
ey O © ax©®
Af VY — (v® )dv=—yj—L. (A27)
—-x avj ayk

It follows from (A 13) that




r 1 & 1 Cy »
By — = 2 eiBil—~ 7] = abey }’k]X( 7
[j§1 i A J(“J A)k-l !
(0)

- Ls ;— S o8,y —L-+ z (Ax,+c,)y,—L— = 0. (A28)
k=1 =1

But, from (A16), (A17), (A20) and (A25), since M;=0, we have

(0) 2,,(0)
X0 =1, &X—© =0, ~ZX_(0) = M. (A29)
ay; 9y; dyx

It is straightforward to verify, with the help of (A23), that (A28) and (A29) are satisfied

by

xV(y) = exp (-';- S 3 Minyivm). (A30)

i=] mm=s]

which establishes the desired result [8].
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